跳至主要內容

【证毕QED】一个积分六个平均数

ShenBourne大约 3 分钟数学证毕QED

[证毕QED]一个积分六个平均数
参考文献: Chen, Hongwei. “Means Generated by an Integral.” Mathematics Magazine, vol. 78, no. 5, 2005, pp. 397–99.

引入

算术平均数几何平均数调和平均数A(a,b)=a+b2G(a,b)=abH(a,b)=11a+1b对数平均数中心平均数希罗平均数L(a,b)=balnblnaT(a,b)=2(a2+ab+b2)3(a+b)N(a,b)=a+ab+b3 \begin{array} { | c | c | c | } \hline \text{算术平均数} & \text{几何平均数} & \text{调和平均数} \\ \hline A(a,b)=\dfrac{a+b}{2} & G(a,b)=\sqrt{ab} & H(a,b)=\dfrac{1}{\frac{1}{a}+\frac{1}{b}} \\ \hline \text{对数平均数} & \text{中心平均数} & \text{希罗平均数} \\ \hline L(a,b)=\dfrac{b-a}{\ln{b}-\ln{a}} & T(a,b)=\dfrac{2(a^2+ab+b^2)}{3(a+b)} & N(a,b)=\dfrac{a+\sqrt{ab}+b}{3} \\ \hline \end{array}

f(t)=abxt+1dxabxtdx f \left ( t \right )=\frac{\int_{a}^{b}x^{t+1}\mathrm{d}x}{\int_{a}^{b}x^{t}\mathrm{d}x}

对数平均数

L(a,b)=balnblna=xab(lnx)ab=ab dxab1x dx=abx0 dxabx1 dx=f(1) \begin{aligned} L(a, b) & =\frac{b-a}{\ln b-\ln a} =\frac{\left.x\right|_{a} ^{b}}{\left.(\ln x)\right|_{a} ^{b}} =\frac{\int_{a}^{b} \mathrm{~d} x}{\int_{a}^{b} \frac{1}{x} \mathrm{~d} x} =\frac{\int_{a}^{b} x^{0} \mathrm{~d} x}{\int_{a}^{b} x^{-1} \mathrm{~d} x} \\ & =f(-1) \end{aligned}

算术平均数

A(a,b)=b+a2=(b+a)(ba)2(ba)=b2a22(ba)=12x2abxab=abx dxab dx=abx1 dxabx0 dx=f(0) \begin{aligned} A(a,b)& =\frac{b+a}{2} =\frac{(b+a)(b-a)}{2(b-a)} =\frac{b^{2}-a^{2}}{2(b-a)} =\frac{\left.\frac{1}{2} x^{2}\right|_{a} ^{b}}{\left.x\right|_{a} ^{b}} =\frac{\int_{a}^{b} x \mathrm{~d} x}{\int_{a}^{b} \mathrm{~d} x} =\frac{\int_{a}^{b} x^{1} \mathrm{~d} x}{\int_{a}^{b} x^{0} \mathrm{~d} x}\\ & =f(0) \end{aligned}

调和平均数

H(a,b)=21b+1a=2(1b1a)(1b+1a)(1b1a)=1b1a12(1b21a2)=x1ab12x2ab=abx2 dxabx3 dx=f(3) \begin{aligned} H(a,b)& =\frac{2}{\frac{1}{b}+\frac{1}{a}} =\frac{2\left(\frac{1}{b}-\frac{1}{a}\right)}{\left(\frac{1}{b}+\frac{1}{a}\right)\left(\frac{1}{b}-\frac{1}{a}\right)} =\frac{\frac{1}{b}-\frac{1}{a}}{\frac{1}{2}\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right)} =\frac{\left. -x^{-1}\right|_{a} ^{b}}{\left.-\frac{1}{2}x^{-2}\right|_{a} ^{b}} =\frac{\int_{a}^{b} x^{-2} \mathrm{~d} x}{\int_{a}^{b} x^{-3} \mathrm{~d} x} \\ & = f(-3) \end{aligned}

几何平均数

G(a,b)=ab=babaab=ba1a1b=2x12ab2x12ab=abx12 dxabx32 dx=f(32) \begin{aligned} G(a,b)& =\sqrt{a b} =\frac{\sqrt{b}-\sqrt{a}}{\frac{\sqrt{b}-\sqrt{a}}{\sqrt{a b}}} =\frac{\sqrt{b}-\sqrt{a}}{\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}} =\frac{\left.2 x^{\frac{1}{2}}\right|_{a} ^{b}}{-\left.2 x^{-\frac{1}{2}}\right|_{a} ^{b}} =\frac{\int_{a}^{b} x^{-\frac{1}{2}} \mathrm{~d} x}{\int_{a}^{b} x^{-\frac{3}{2}} \mathrm{~d} x} \\ & =f\left(-\frac{3}{2}\right) \end{aligned}

中心平均数

T(a,b)=2(a2+ab+b2)3(a+b)=2(b3a3)3(b2a2)=13x3ab12x2ab=abx2 dxabx dx=f(1) \begin{aligned} T(a, b) & = \frac{2\left(a^{2}+a b+b^{2}\right)}{3(a+b)} =\frac{2\left(b^{3}-a^{3}\right)}{3\left(b^{2}-a^{2}\right)} =\frac{\left.\frac{1}{3} x^{3}\right|_{a} ^{b}}{\left.\frac{1}{2} x^{2}\right|_{a} ^{b}} =\frac{\int_{a}^{b} x^{2} \mathrm{~d} x}{\int_{a}^{b} x \mathrm{~d} x}\\ & =f(1) \end{aligned}

希罗平均数

N(a,b)=a+ab+b3=23(b32a32)2(b12a12)=23x32ab2x12ab=abx12 dxabx12 dx=f(12) \begin{aligned} N(a, b)& =\frac{a+\sqrt{a b}+b}{3} =\frac{\frac{2}{3}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)}{2\left(b^{\frac{1}{2}}-a^{\frac{1}{2}}\right)} =\frac{\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{a} ^{b}}{\left.2 x^{\frac{1}{2}}\right|_{a} ^{b}} =\frac{\int_{a}^{b} x^{\frac{1}{2}} \mathrm{~d} x}{\int_{a}^{b} x^{-\frac{1}{2}} \mathrm{~d} x}\\ & = f\left(-\frac{1}{2}\right) \end{aligned}

大小关系证明

调和平均数几何平均数f(3)=H(a,b)=11a+1bf(32)=G(a,b)=ab对数平均数希罗平均数f(1)=L(a,b)=balnblnaf(12)=N(a,b)=a+ab+b3算术平均数中心平均数f(0)=A(a,b)=a+b2f(1)=T(a,b)=2(a2+ab+b2)3(a+b) \begin{array} { | c | c | c | } \hline \text{调和平均数} & \text{几何平均数} \\ \hline f(-3)=H(a,b)=\dfrac{1}{\frac{1}{a}+\frac{1}{b}}& f\left(-\dfrac{3}{2}\right)=G(a,b)=\sqrt{ab} \\ \hline \text{对数平均数} & \text{希罗平均数} \\ \hline f(-1)=L(a,b)=\dfrac{b-a}{\ln{b}-\ln{a}}& f\left(-\dfrac{1}{2}\right)=N(a,b)=\dfrac{a+\sqrt{ab}+b}{3} \\ \hline \text{算术平均数} & \text{中心平均数} \\ \hline f(0)=A(a,b)=\dfrac{a+b}{2}& f(1)=T(a,b)=\dfrac{2(a^2+ab+b^2)}{3(a+b)} \\ \hline \end{array}

b>a>0b>a>0 时, f(t)f(t)R\mathbb{R} 上单调递增, 且 limtf(t)=a\lim \limits_{t \to -\infty} f(t)=a, limtf(t)=b\lim \limits_{t \to \infty} f(t)=b.

H(a,b)G(a,b)L(a,b)N(a,b)A(a,b)T(a,b) H(a,b)\leq G(a,b)\leq L(a,b)\leq N(a,b)\leq A(a,b)\leq T(a,b)

平方平均数

t=2